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Summary

Genome-Wide Association studies (GWAS) offer an unbiased

means to understand the genetic basis of traits by identifying sin-

gle nucleotide polymorphisms (SNPs) linked to causal variants of

complex phenotypes. GWAS have identified a host of susceptibil-

ity SNPs associated with many important human diseases, includ-

ing diseases associated with aging. In an effort to understand the

genetics of broad resistance to age-associated diseases (i.e., ‘well-

ness’), we performed a meta-analysis of human GWAS. Toward

that end, we compiled 372 GWAS that identified 1775 susceptibil-

ity SNPs to 105 unique diseases and used these SNPs to create a

genomic landscape of disease susceptibility. This map was con-

structed by partitioning the genome into 200 kb ‘bins’ and map-

ping the 1775 susceptibility SNPs to bins based on their genomic

location. Investigation of these data revealed significant hetero-

geneity of disease association within the genome, with 92% of

bins devoid of disease-associated SNPs. In contrast, 10 bins

(0.06%) were significantly (P < 0.05) enriched for susceptibility to

multiple diseases, 5 of which formed two highly significant peaks

of disease association (P < 0.0001). These peaks mapped to the

Major Histocompatibility (MHC) locus on 6p21 and the INK4 ⁄ ARF

(CDKN2a ⁄ b) tumor suppressor locus on 9p21.3. Provocatively, all

10 significantly enriched bins contained genes linked to either

inflammation or cellular senescence pathways, and SNPs near reg-

ulators of senescence were particularly associated with disease of

aging (e.g., cancer, atherosclerosis, type 2 diabetes, glaucoma).

This analysis suggests that germline genetic heterogeneity in the

regulation of immunity and cellular senescence influences the

human healthspan.
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Introduction

A central tenet of gerontology is that common pathogenic mechanisms

cause age-related phenotypes in disparate organs and tissues. For exam-

ple, telomere dysfunction in the liver, bone marrow, and lung has been

linked to age-associated, tissue-specific diseases such as cirrhosis, aplastic

anemia, and pulmonary fibrosis, respectively (Armanios, 2012). Several

broad pathways have been suggested as candidate global modifiers of

human aging including sirtuins, insulin ⁄ IGF-1, ROS metabolism,

inflammation, and cellular senescence. A prediction of the notion that

common pathogenic pathways contribute to aging of distinct tissues is

that there should be genes whose expression modulates these pathways,

and heterogeneous expression of such genes within a population should

be associated with multiple, seemingly distinct tissue-specific diseases.

High-density single nucleotide polymorphism (SNP) arrays have pro-

vided population geneticists a high throughput method for identifying

polymorphisms associated with the onset of complex phenotypes (e.g.,

physiological traits and ⁄ or markers, congenital abnormalities, and disease

susceptibility ⁄ resistances). Large scale, population-based studies that uti-

lize SNP arrays to gain insights into gene(s) that may promote ⁄ cause a

complex phenotype consist of Candidate Gene Association Studies

(CGAS) and Genome-Wide Association Studies (GWAS). The key differ-

ence between these two epidemiological study methods is that CGAS

take a hypothesis-driven approach, whereas GWAS are performed in a

non-biased manner (see review by (Jorgensen et al., 2009) for more

detailed discussion of advantages ⁄ disadvantages of these methodolo-

gies). Moreover, modern pedigree studies (linkage analyses) can be per-

formed using SNP arrays to perform genome-wide searches to identify

variants associated with complex diseases, such as Alzheimer’s disease

(Zuchner et al., 2008), but variants identified from such efforts may be

limited to small numbers of actual cases (i.e., individual families).

GWAS have been successfully employed to identify common polymor-

phic variations that contribute to several complex phenotypes. The value

of GWAS is underscored by the ready identification of risk alleles that

have been replicated in independent populations, which have identified

both novel and known modulators of disease pathogenesis, as well as

revealed new therapeutic targets (Altshuler et al., 2008). Moreover, the

National Human Genome Research Institute (NHGRI) maintains a catalog

of published GWAS that currently houses approximately 1000 studies

that have identified >4500 SNPs to >500 phenotypes (Hindorff et al.,

2011). In an effort to understand what GWAS tell us about disease of

human aging, we performed a meta-analysis of the NHGRI GWAS cata-

log. In particular, we used this resource to ask in an unbiased, genome-

wide manner whether there are ‘hotspot’ loci associated with multiple

disease susceptibility ⁄ resistance phenotypes. Toward that end, we fil-

tered this NHGRI data set to only include studies that focused on clinically

relevant human diseases. To better visualize chromosomal loci and candi-

date genes associated with multiple, distinct human diseases, especially

age-associated diseases, we summed the frequency of disease-associated

SNPs in 200 kb bins spanning the whole genome. While clearly ‘age-

related disease’ is not the same thing as ‘aging’, we elected to focus this

analysis on disease susceptibility given the tractability of many well-delin-

eated diseases to GWAS, as opposed to the mixed results obtained for

less discrete endpoints (e.g., longevity, frailty, etc.). We believe this

approach is still of interest to gerontologists given that freedom from

disease (wellness) is an essential determinant of healthspan.

To compile and filter GWAS that identified SNPs specific to human

disease resistance ⁄ susceptibility, the complete 6 ⁄ 29 ⁄ 11 release of the

NHGRI GWAS database was downloaded from the NHGRI GWAS website

(Hindorff et al., 2011). This release contained 932 published GWAS that

identified 4558 SNPs in 511 phenotypes, with each SNP achieving a
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combined P-value of < 1.0 *10–5. Studies included in the catalog are also

required to include at least 100 000 SNPs to permit a truly genome-wide

analysis. Our analysis did not distinguish between ‘susceptibility’ SNPs

and ‘protective’ SNPs, as each ‘susceptibility’ allele implies an alternative

‘protective’ allele at the same location. This data set was filtered to

exclude small GWAS (< 300 cases) as well as those that investigated non-

disease traits, congenital deformities, and medical conditions of limited

morbidity (e.g., restless leg syndrome). In rare instances (n = 14) where

disease versus non-disease classification of a GWAS was not obvious,

classification was performed with blinding to GWAS results (see Table S1

and Table S2 for included and excluded ‘diseases’). The inclusion ⁄ exclu-

sion of these borderline conditions did not affect the analysis’ conclu-

sions. The filtered GWAS data set consisted of 372 studies that identified

1775 SNPs associated with susceptibility ⁄ resistance to 105 unique human

diseases. The total number of patients from these 372 studies totaled

more than 2.3 million individuals from diverse ethnic backgrounds.

This data set was then used to construct the genome-wide disease sus-

ceptibility map (Fig. 1). The hg19 release of the human genome was

divided into 15,157 bins with each bin containing 200 kb of genomic

sequence (see Table S3 for genomic coordinates and hits associated with

each bin). The analysis was also not sensitive to choice of bin size. SNPs

from the filtered GWAS data set were mapped to the binned genome

with redundant hits of the same disease to the same bin counted as a sin-

gle hit. As an example of this, when GWAS SNPs mapped to the same bin

as a disease that encompassed more specific disease states within it (e.g.,

inflammatory bowel disease (IBD) and ulcerative colitis), it was counted as

a single disease hit for that bin. Alternatively, if only specific forms of IBD

mapped to the same bin, they were counted as individual disease hits for

that bin. This approach allowed studies that identified distinct effects on

disease subtypes to be included, without over representing studies

focused on identifying SNPs associated with disease categories. Distin-

guishing disease subtypes (i.e., IBD) had minimal impact on our findings,

and only shifted one locus, 17q12, above the significance threshold. The

number of unique disease associations per bin was then graphed versus

chromosomal location in a ‘Manhattan plot’ (Fig. 1), and a 10 000

iteration permutation analysis was performed on the mapped SNPs to

estimate statistical significance.

We elected to use a permutation test to estimate statistical signifi-

cance, as this approach accounts for variation in the number of SNPs

tested, our method of counting diseases in shared categories, and multi-

ple comparisons of assessing each bin for significance. Permutation test-

ing is the gold standard for determining significance, provided that it is

computationally tractable (Johnson et al., 2010). In each iteration of this

test, all SNPs were randomly and independently assigned to the 15 157

bins that represent the whole genome, and the bin with the maximum

number of randomly assigned SNPs was identified. Bins containing more

than four unique disease-associated SNPs occurred in less than 5%

(i.e., P < 0.05) of the 10 000 iterations performed, setting this as our

threshold for significance (indicated by a dashed line on Fig. 1). Although

it is possible that not all of the 15,000 + bins are assayed equally well by

GWAS, the inclusion criterion of the NHGRI requiring at least 100 000

mapping SNPs indicates that the large majority of the genome is covered

in these analyses, and the major conclusions of the study remain signifi-

cant even if the permutation analysis is restricted to a small fraction of the

genome.

This analysis revealed substantial heterogeneity in the human genome

with regard to disease susceptibility. The majority of bins (13 900 of

15 157; 92%) did not contain any disease-associated SNPs. In contrast,

only ten bins (2 Mb or 0.06% of the genome) showed statistically signifi-

cant enrichment (P < 0.05) for disease association, with two strong

‘peaks’ (P < 0.0001) of multi-disease association. The largest peak

spanned four neighboring bins (800 kb) that contain the gene-rich MHC

locus on chromosome 6p21 (Fig. 1). SNPs in this bin were linked to 24

unique diseases, most of which were autoimmune in nature (e.g.,

asthma, inflammatory bowel disease, lupus, Hodgkins Disease, Table 1),

and not classical disease of aging. This finding confirms the well-estab-

lished pathogenic role of MHC polymorphisms in the development of

diverse autoimmune diseases (Fernando et al., 2008; Rioux et al., 2009).

Therefore, while the association of the MHC locus with autoimmune

diseases is not surprising, this finding serves as a positive control for the

analysis.

The second highest disease susceptibility association peak mapped to a

gene-poor bin on chromosome 9p21.3. This bin contains only four tran-

scripts emanating from the INK4 ⁄ ARF (or CDKN2a ⁄ b) locus, which

harbors three related protein-encoding transcripts (p15INK4b, p16INK4a,

and p14ARF) as well as a long non-coding RNA (ANRIL) that is anti-sense

to p15INK4b. The INK4 ⁄ ARF locus is a key mediator of cellular senescence

that inhibits cell cycle progression from G1 to S phase in response to vari-

ous forms of cellular stress (Sharpless & DePinho, 2007). The 9p21.3 bin

was linked to 10 unique diseases, almost all of which are age-associated:

cancers (e.g., breast, glioblastoma), type 2 diabetes mellitus (T2DM),

glaucoma and several atherosclerotic diseases (e.g., stroke, aortic aneu-

rysm, myocardial infarction) (Table 1). It is worth noting the considerable

size of these two peaks: the 6p21 and 9p21.3 disease susceptibility

9p21 –INK4/ARF Locus

6p21 –MHC Locus

N
um

be
r 

of
 d

is
ea

se
s 

as
so

ci
at

ed
 

Chromosome

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 X

Fig. 1 The genetic landscape of human

disease. Manhattan plot depicting the number

of unique human diseases per bin linked to

disease susceptibility SNPs identified by GWAS.

Each point represents a 200 kb bin ordered by

chromosomal location. The dotted line

represents the cutoff for statistical significance

as determined by a 10 000 iteration

permutation test (P < 0.05). The two highest

peaks of disease association (P < 0.0001) are

circled.
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hotspots represent 0.03% of the genome, but combined were associated

with nearly a third (34 of 105) of the unique diseases analyzed by GWAS.

The remaining five bins (1p31.3, 2p16.1, 5p15.33, 7q32.1, and

17q12) that were significantly enriched for disease associations

(P < 0.05) were also directly linked to either immunity ⁄ inflammation

or cellular senescence pathways. The 1p31 and 2p16 bins contain

IL23R and REL, respectively, which modulate immunity and lymphocyte

biology, and these bins were predominantly associated with autoim-

mune disease (Table 1). The 5p15.33 bin includes TERT, a critical sub-

unit of telomerase, which is associated with cellular senescence by

modulating telomere length (Martinez & Blasco, 2011). Disease sus-

ceptibilities mapping to the 5p15.33 bin were mainly comprised of

cancers, consistent with the association between telomere length and

cancer susceptibility (Table 1) (Hills & Lansdorp, 2009; Willeit et al.,

2010). The 5p15.33 bin was also associated with idiopathic pulmonary

fibrosis (IPF), consistent with the finding of increased IPF in patients

with congenital telomerase deficiency (Armanios et al., 2007; Tsakiri

et al., 2007). Candidate genes in the 7q32 and 17q12 bins are less

obvious, but these loci were also solely associated with autoimmune

or inflammatory diseases (Table 1), suggesting these bins harbor mod-

ulators of the immune response. In general, the 5 loci associated with

immunity and inflammation were mostly associated with autoimmune

diseases (e.g., T1DM, asthma, IBD, Hodgkins disease) and were not as

strongly linked to age-associated diseases as the two bins associated

with senescence (i.e., cancers, atherosclerosis, T2DM, glaucoma, pul-

monary fibrosis).

Although the finding that all loci associated with broad disease resis-

tance appeared related to effects on immunity or senescence, there

are limitations to this analysis. First, cis-regulatory elements can act

over a large genomic scale (e.g., several Mb’s); for example, 9p21.3

variants have been suggested to influence expression both of the

nearby tumor suppressor proteins of the INK4a ⁄ ARF locus and IFNa-

21, a more distant (approximately 1 Mb) regulator of inflammation

(Liu et al., 2009; Harismendy et al., 2011). Likewise, another gene in

the 5p15.33 bin, CLPTM1L, has also been postulated to contribute to

cancer progression (McKay et al., 2008). Therefore, the true causal

variant located near GWAS-identified SNPs may influence expression

of one or more local transcripts, some or all of which may not be

located in the same bin. Moreover, an ascertainment bias exists in that

certain well-demarcated disease states (e.g., autoimmune diseases)

appear more tractable to GWAS than less clinically distinct entities

(e.g., community acquired pneumonia). Therefore, not all morbid con-

ditions of aging are tractable to GWAS.

Importantly, the prevalence and morbidity of each disease were

not weighted in this study. For example, scleroderma (rare) and

myocardial infarction (common) were each counted as a single,

unique disease per genomic bin, despite differing greatly in their

total contribution to human morbidity. Additionally, this analysis

does not account for SNP prevalence or scale of their effect. Future

work could incorporate these factors to estimate the multi-disease

population attributable risk associated with certain SNP genotypes.

As a result of these limitations, this analysis may overestimate the

importance of the MHC locus, which is strongly associated with sev-

eral rare diseases. By contrast, it may underestimate the relevance

of the 9p21.3 bin, which is associated with common, highly morbid

diseases (Table 1).

Although the association of senescence regulators such as TERT and

p16INK4a with cancer and the MHC locus with autoimmunity is not

surprising, the finding that all identified hotspots of recurrent disease

association map to bins linked to either inflammation ⁄ immunity or cel-

lular senescence is striking. The diversity of age-related diseases associ-

ated with the 9p21.3 bin is particularly remarkable (Fig. 2). Of the

four principal causes of age-related morbidity (neoplasia, metabolic

disease, atherosclerosis, and neurodegeneration), three are recurrently

associated with polymorphisms mapping near the INK4 ⁄ ARF locus by

GWAS (Fig. 2). Recently, even the outlier, neurodegenerative disease,

has been linked to this locus based on a genome-wide pedigree study

of late onset Alzheimer’s disease (Zuchner et al., 2008). While it

remains unclear how modulating senescence may contribute to some

diseases in the 9p21.3 bin, this finding is consistent with several recent

murine studies showing an effect of modulating p16INK4a expression

in vivo on many non-malignant, age-associated phenotypes including

T2DM, atherosclerosis, T-cell function, cataracts, and sarcopenia (Krish-

namurthy et al., 2006; Baker et al., 2011; Chen et al., 2011; Kuo

et al., 2011; Liu et al., 2011).

It is also worth noting what was not associated with broad disease sus-

ceptibility: conserved pathways that modulate longevity in model organ-

isms (e.g., Insulin ⁄ IGF-1 signaling, mTOR signaling, reactive oxygen

species signaling, Sirtuins, etc.). It is possible that regulation of these

pathways is not variable among human populations or that these path-

ways do not modulate general disease resistance in humans, but we think

more likely this observation reflects a lack of power of the GWAS meta-

analysis approach. Accordingly, SNPs near IGF1R, FOXO3A, and AKT1

have been associated with longevity in candidate studies and pedigree

analyses (Suh et al., 2008; Pawlikowska et al., 2009; Sebastiani et al.,

2012), suggesting an association of these loci with age-associated condi-

tions may emerge in genome-wide analyses with further study. Nonethe-

less, this unbiased meta-analysis of results from approximately 2.3 million

patients only identifies polymorphic regulation of cellular senescence and

immunity as general determinants of genetic susceptibility to a host of

Table 1 Chromosomal loci of significantly enriched (‘hotspot’) bins

Chromosome region No. unique diseases ⁄ bin Candidate gene(s) Associated disease susceptibilities

1p31.3 5 IL23R Immune: IBD (x2), Behcet’s disease, Psoriasis, Anklyosing spondylitis

2p16.1 5 REL Immune: IBD, RA, Psoriasis, Celiac Disease, Hodgkin’s Lymphoma

5p15.33 5 TERT Senescence: Cancers (x5), Idiopathic pulmonary fibrosis

6p21 26 across

four bins

MHC, NOTCH4 Immune: Arthritis (x4), IBD (x2), Cancer (x5), Lupus, MS, Scleroderma,

Celiac disease, T1DM, Asthma, Primary biliary cirrhosis, Psoriasis

7q32.1 5 IRF5, TNPO3 Immune: SLE, IBD, RA, Primary biliary cirrhosis, Scleroderma

9p21.3 10 p15INK4b, p16INK4a,

p14ARF, ANRIL

Senescence: MI, stroke, T2DM, Glaucoma, Aortic aneurysm,

intracranial aneurysm, Cancers (x3), Endometriosis

17q12 5 IKZF3, GSDMA,

GSDMB

Immune: IBD (x2), Asthma, RA, T1DM
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human diseases, with in particular a striking association of senescence

with age-associated disease. These genetic data support the therapeutic

targeting of these specific pathways to promote broad disease resistance

and augment the human health span.
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